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Big Picture

Why are investors so wary about holding risky assets?

I Non-participation, high risk premia, volatility premia, etc.

One explanation: rare disasters

But how much (how little) do investors need to know about these
disasters to get sufficiently scared?

Makes sense

I Empirical distribution of disasters is thick-tailed
I If disasters are rare, how would investors know the exact distribution?

Upshot: When investors don’t know anything, they’re really
scared and cautious.

I (1) Ambiguity ↑ =⇒ Disaster exposure ↓
I (2) Ambiguity ↑ =⇒ Diversification ↓
I (3) Ambiguity ↑↑ =⇒ Nonparticipation
I (4) Fat tails ↑ =⇒ ∂ Disaster exposure /∂ Ambiguity ↑ (Effect 1 is

stronger)
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Model Overview

max
π

E[u(W )]

W = 1 + πx

x = µ+ σε

+ 1py

ε ∼ N (0, 1)

,

Normal Model: no disasters

Add disasters: with probability p, X jumps by Y

Multiple assets: m assets, m correlated normal shocks, n ≤ m
independent jumps, everything loads on everything

Full model: multiple assets + continuous time with terminal date T
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Key Finding: Need Both Fat Tails and Ambiguity Aversion
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Observationally Equivalent Reformulation

From Hansen and Sargent (2008)

max
k

min
P∈P

{
EP [u(c)] + θ Entropy(P, P̂)

}
⇔ max

k

{
−θ log EP̂

[
e−

1
θ
u(c)

]}
When using entropy to measure proximity of distributions, the robust
control problem (still non-parametric!) ends up observationally
equivalent to additional risk sensitivity

RHS is log of Epstein-Zin preferences, where θ is “boosts” risk
aversion

Disasters, fat tails, and extra utility curvature!

Do agents not know the true jump model or are they just particularly
averse to jumps?

Not a bad thing, just a helpful way to think about this if you’re not
familiar with robust control
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Comments

Nice paper!

Contributions

I Qualitative: fatter tails and more ambiguity =⇒ more cautious
investing – to be expected

I Methodological: closed-form and low-dimensional (n rather than m)
solutions neat!

I Quantitative: ambiguity aversion “solves” the weak effect of fat tails
on CRRA agents’ decisions

Questions

I What does diversification mean when jump is systemic?
I In calibration, how averse to ambiguity does an investor need to be to

not participate? What is her worst-case model? Does it seem plausible
for the marginal stock market entrant?

I How does ambiguity about jump tail risks affect optimal risk-sharing,
connecting this work to Ibragimov et al (2011)?
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Conclusion

Interesting paper; I learned a lot.

Full set of model features seems necessary to get quantitative results

Since crisis motivates the paper, I encourage authors to apply model
to other asset classes, particularly those held by financial
intermediaries.
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