Discussion of "Mortgage Rates and Rents: Evidence from Local Mortgage Lock-In Effects"

by Jorge De la Roca, Marco Giacoletti, Lizhong Liu

Vadim Elenev Johns Hopkins Carey MFA | March 2025

Conceptual "Model" of Housing Lifecycle

- Inspired by Fonseca, Liu, and Mabille (2024)'s average path
 - "Born" as a renter
 - Eventually buy a starter home
 - Then, upgrade to a "step-up home"
 - Finally, downsize
- Direct effect of lock-in: homeowners stay put
 - Starter homeowners don't buy step-ups
 - \rightarrow don't vacate the home that renters were going to buy \rightarrow net demand $\frown \rightarrow$ house prices \frown
- Higher house prices + higher mortgage rates: fewer transitions into homeownership
 - Renters "locked into" the rental market indirectly
 - \rightarrow net demand for rental units $\frown \rightarrow$ rents \frown
- Prediction: markets with larger current rate origination rate gaps will have higher rental prices

Cross-Sectional Test of the Prediction

• Two Similar Houses Up For Rent in Sep 2022

- Orange house neighbors bought their houses when mortgage rates were low
 - more "locked in" than blue house neighbors
- Finding: orange house is more expensive to rent

Mechanism

- Homeowners who bought in 2015 and 2017 are more likely to move than 2020/2021 buyers
- Larger potential purchase inventory in the blue subneighborhood
- Less competition for rental units
- Lower rents

Large effect!

- When rental unit A is surrounded by houses whose owners would have to pay 10% more per month to buy the same house today than a rental unit B's neighbors, A's asking rent is 3.5% higher than B's
- Specifications without time fixed effects less convincing, I think
 - But why are 2021-2023 estimates lower?

	(1) 2014-2023	(2) 2014-2023 Multi Family	(3) 2021-2023	(4) 2021-2023 Multi Family	(5) 2014-2023 0.347** (2.25)		
$LockPayGap_{0.5ml}$	0.599*** (10.79)	0.508*** (10.72)	0.263*** (19.95)	0.263*** (15.90)			
Census Tract FE Building FE YM × Neighbor FE	YES NO NO YES NO NO		YES NO NO	NO YES NO	YES YES		
Average Rent (\$) R-Square adj N	2,825 0.824 3010270	2,346 0.915 876796	3,201 0.817 520553	2,790 0.919 127399	2,825 0.857 3118337		

Table 2: Mortgage Lock-In (LockPayGap_{0.5ml}) Effects on Rents

Notes: The Table shows coefficients estimates from different specifications of equations (3) in columns (1) to (4), and equation (4) in column (5). The dependent variable is log asking rent for a sample rental listing in Los Angeles County. $LockPayGap_{0.5ml}$ is the monthly payment gap in the 0.5-mile radius surrounding each listing. T-stats are reported in parentheses and are bases on standard errors clustered by neighborhood and year-quarter.

Mapping "Model" to Data

- State variable: degree of lock-in
- Empirical test uses the panel of LA housing markets
 - Market := Every 0.5mi circle around every rental in every neighborhood in every month
 - Every market has a different realization of the state variable
 - Both geography and time series act as sources of empirical variation
- To identify the "model" parameters using this test, need to assume that
 - Degree of lock-in is the only difference between markets (after controlling for observables)
 - 2. No substitution between markets (either across geography or across time)

1. Omitted Variables

- Neighborhood X Time Fixed Effects: residual variation in last transaction date of nearby houses is spatial and very local
- Example: west side of the neighborhood has better green spaces
 - Made houses there more sought-after by families with kids during covid (2020-21)
 - More turnover at the time of low interest rates \rightarrow more lock-in
 - Still more sought after by those in the rental stage of lifecycle ightarrow higher rent
- Argument against: lack of Moran's spatial autocorrelation
 - In my example, lock-in would gradually decrease as you get further east. It doesn't.
 - Or does it? Spatial correlation in lock-in at house vs. market level...
 - Which fixed effects to include? The owned house's neighborhood or the rental's?
 - More directly measure transmission of housing \rightarrow market dispersion in lock-in

- Null hypothesis: timing of housing purchases (and hence lock-in) randomly spatially assigned
- Then, variation in market-level lock-in is due to granularity
- Geographically broader market → smaller variation
- Simulate under the null
- Compare to data less steep descent is evidence of spatial corr.

- Null hypothesis: timing of housing purchases (and hence lock-in) randomly spatially assigned
- Then, variation in market-level lock-in is due to granularity
- Geographically broader market → smaller variation
- Simulate under the null
- Compare to data less steep descent is evidence of spatial corr.

- Null hypothesis: timing of housing purchases (and hence lock-in) randomly spatially assigned
- Then, variation in market-level lock-in is due to granularity
- Geographically broader market → smaller variation
- Simulate under the null
- Compare to data less steep descent is evidence of spatial corr.

- Null hypothesis: timing of housing purchases (and hence lock-in) randomly spatially assigned
- Then, variation in market-level lock-in is due to granularity
- Geographically broader market → smaller variation
- Simulate under the null
- Compare to data less steep descent is evidence of spatial corr.

2. Substitution Across Space

- What is the elasticity of substitution between the west and the east markets (subneighborhoods of Los Feliz)?
 - Probably not 0
- Higher lock-in in west should drive up prices and rents in east as well
- Paper's estimates are a lower bound of the aggregate effect
- By how much?

2. Substitution Across Time

- Response of housing inventory to mortgage rates has complex dynamics
- Expect ongoing decline in inventory?
 - Rush to buy/rent now → static analysis overstates effect
- Expect mean reversion?
 - Wait → static analysis understates effect

Prop 13: Another Kind of Lock In

- In CA, property taxes only get reset at purchase
- House price appreciation creates an asset
 - = PV [tax rate * (current price adjusted purchase price)]
 - Asset lost upon sale
 - Reason not to sell
 - Reason to rent out → increase in rental supply?
- Does not get absorbed by fixed effects → include as control

HPA To 2023 From:	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
South Los Angeles	171%	133%	132%	111%	80%	39%	35%	23%	9%	4%	1%
4 Southeast Los Angeles	186%	144%	137%	117%	82%	45%	39%	27%	14%	7%	2%
4 Hollywood	63%	47%	50%	43%	27%	5%	6%	-1%	-8%	-8%	-6%
3 North Hollywood	129%	107%	113%	97%	74%	41%	40%	26%	11%	6%	2%
1 Van Nuys	153%	128%	132%	113%	85%	51%	48%	31%	16%	8%	3%
Mid City	96%	73%	80%	70%	51%	17%	18%	8%	-1%	-4%	-4%
3 Sylmar	143%	118%	117%	103%	80%	52%	47%	32%	17%	10%	4%
₄ San Pedro	89%	78%	84%	74%	56%	35%	35%	25%	10%	4%	0%
1 Northridge	118%	103%	109%	97%	78%	55%	53%	36%	17%	10%	4%
s Woodland Hills	118%	104%	113%	100%	81%	56%	54%	38%	18%	9%	3%
2 Boyle Heights	176%	136%	135%	112%	82%	42%	38%	25%	14%	6%	2%
2 Sherman Oaks	112%	96%	107%	94%	74%	43%	43%	29%	11%	4%	0%
3 Pacoima	164%	130%	130%	112%	84%	52%	49%	33%	19%	9%	5%
3 Koreatown	65%	48%	48%	39%	24%	3%	5%	0%	-5%	-4%	-3%
5 Westlake	90%	66%	65%	56%	36%	12%	14%	6%	1%	-4%	-3%
2 Reseda	142%	120%	125%	109%	83%	52%	49%	34%	17%	9%	4%
Panorama City	17104	13506	130%	11906	8006	5206	1906	3506	1.80%	906	306

Neighborhood and Year of Purchase create substantial variation in "Prop 13 Lock In"

Corr(Prop 13 Lock In, Mortgage Lock In) = ?

Conclusion

- Prevalence of fixed rate mortgages in the U.S. creates a unique challenge for monetary policymakers as they raise rates
- "Lock in" affects not just homeowners/buyers but also renters
 - Who tend to be younger and lower income \rightarrow implications for inequality
- Convincing evidence of spillovers into rental markets
- Highly recommend you read the paper!